1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
terrypitts5818 edited this page 1 month ago


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses support finding out to boost reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential distinguishing function is its reinforcement learning (RL) action, which was used to refine the model's actions beyond the basic pre-training and tweak process. By including RL, DeepSeek-R1 can adjust better to user feedback and goals, eventually boosting both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, suggesting it's geared up to break down complex questions and factor through them in a detailed way. This guided reasoning procedure permits the model to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation model that can be integrated into different workflows such as agents, rational reasoning and data analysis tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, allowing efficient inference by routing inquiries to the most pertinent expert "clusters." This method permits the design to focus on various issue domains while maintaining total effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to mimic the habits and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and assess designs against essential security criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limitation increase, develop a limitation increase request and connect to your account group.

Because you will be releasing this model with Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid hazardous material, and assess designs against crucial security requirements. You can carry out precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation involves the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The design detail page offers necessary details about the model's capabilities, prices structure, and execution guidelines. You can discover detailed usage directions, including sample API calls and code snippets for combination. The design supports various text generation tasks, consisting of content production, code generation, and concern answering, using its reinforcement finding out optimization and CoT thinking capabilities. The page also includes deployment choices and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, pick Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, go into a variety of instances (between 1-100). 6. For example type, choose your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and facilities settings, wiki.lafabriquedelalogistique.fr consisting of virtual personal cloud (VPC) networking, service function permissions, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production releases, you may wish to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the deployment is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can try out various triggers and adjust design parameters like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For instance, content for reasoning.

This is an outstanding way to explore the design's thinking and text generation capabilities before incorporating it into your applications. The play ground supplies instant feedback, helping you comprehend how the model responds to different inputs and letting you fine-tune your prompts for optimum results.

You can rapidly evaluate the model in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform inference using a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up inference specifications, and sends out a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical approaches: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you choose the method that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design browser displays available models, with details like the service provider name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if suitable), indicating that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the model details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the model, it's recommended to evaluate the model details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the automatically created name or produce a custom-made one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting proper circumstances types and counts is crucial for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the design.

    The implementation process can take a number of minutes to finish.

    When implementation is complete, your endpoint status will alter to InService. At this point, the model is prepared to accept reasoning requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the release is total, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent unwanted charges, complete the actions in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments.
  5. In the Managed implementations area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build ingenious options using AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and enhancing the inference performance of large language models. In his leisure time, Vivek delights in hiking, viewing motion pictures, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing services that assist consumers accelerate their AI journey and unlock business worth.